Parameter inference for binary black holes using deep learning

Stephen R. Green Albert Einstein Institute Potsdam

(based on arXiv:2008.03312 with J. Gair)

ICERM Workshop on Statistical Methods for the Detection, Classification, and Inference of Relativistic Objects

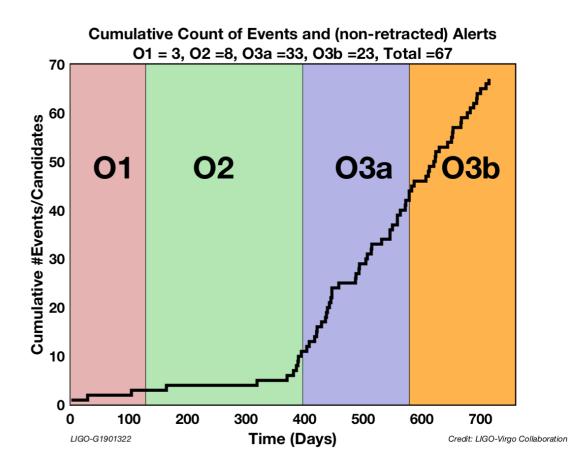
November 15, 2020

Outline

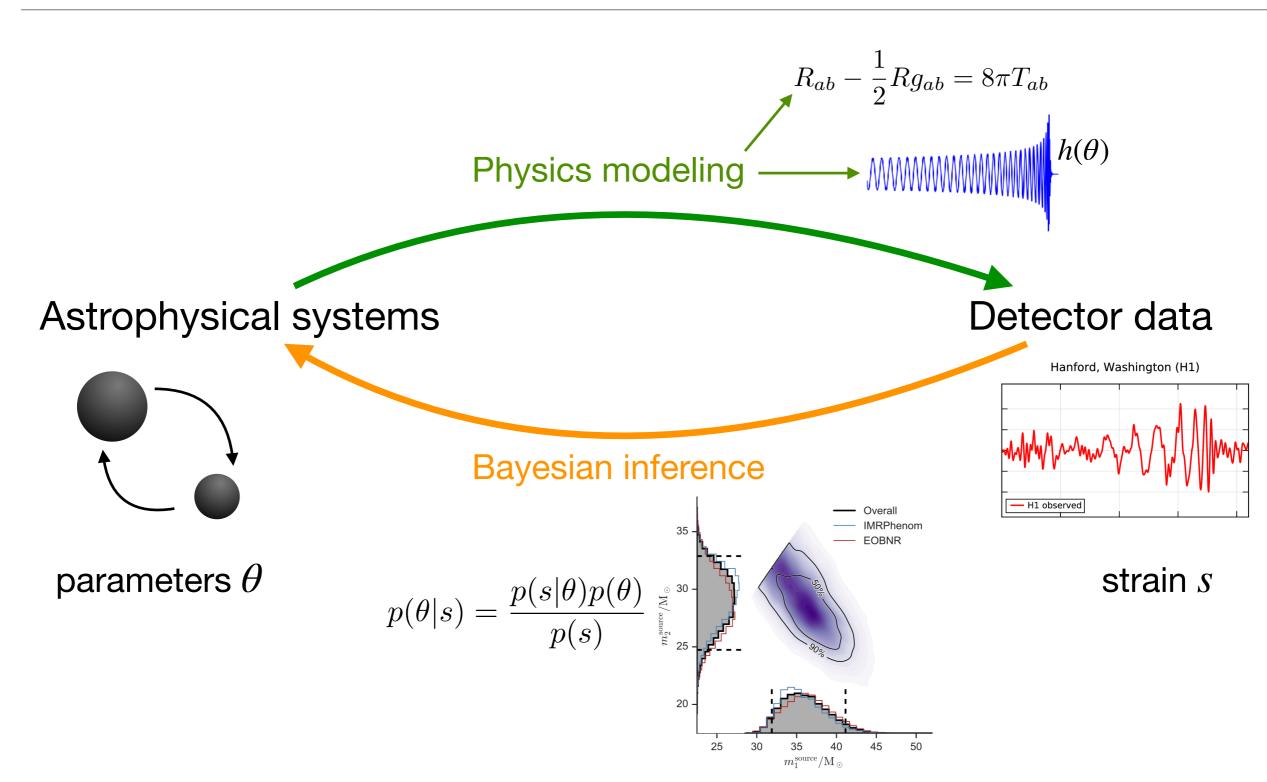
- 1. Introduction: Bayesian inference with iterative samplers
- 2. Simulation-based inference with normalizing flows
- 3. Application to binary black hole parameter estimation
- 4. Demonstration on GW150914
- 5. Outlook

Introduction

- Since the first detection of gravitational waves, there have been steady improvements in detector sensitivity.
 - 50 published detections of compact binaries
 - Two binary neutron stars, one with multi-messenger counterpart
- Enabled tests of gravity, understanding of neutron-star physics, and placed constraints on binary populations and cosmology.

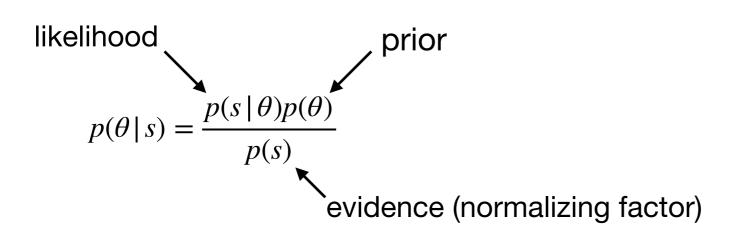


Introduction



Bayesian parameter inference for compact binaries

• Sample posterior distribution for system parameters θ (masses, spins, sky position, etc.) given detector strain data s.



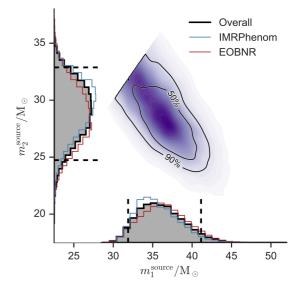


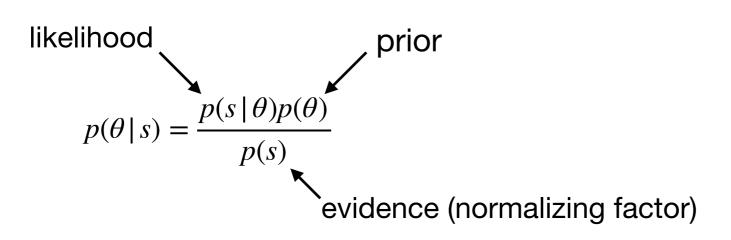
Image: Abbott et al (2016)

 Likelihood based on assumption of stationary Gaussian detector noise

$$p(s\,|\,\theta) \propto \exp\left(-\frac{1}{2}\sum_{I}\left(s_{I}-h_{I}(\theta)\,|\,s_{I}-h_{I}(\theta)\right)\right)$$
 where
$$\left(a\,|\,b\right)=2\int_{0}^{\infty}\mathrm{d}f\,\frac{\hat{a}(f)\hat{b}(f)^{*}+\hat{a}(f)^{*}\hat{b}(f)}{S_{n}(f)}$$
 waveform model

Bayesian parameter inference for compact binaries

• Sample posterior distribution for system parameters θ (masses, spins, sky position, etc.) given detector strain data s.



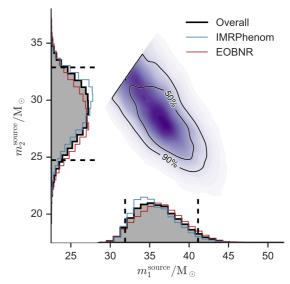
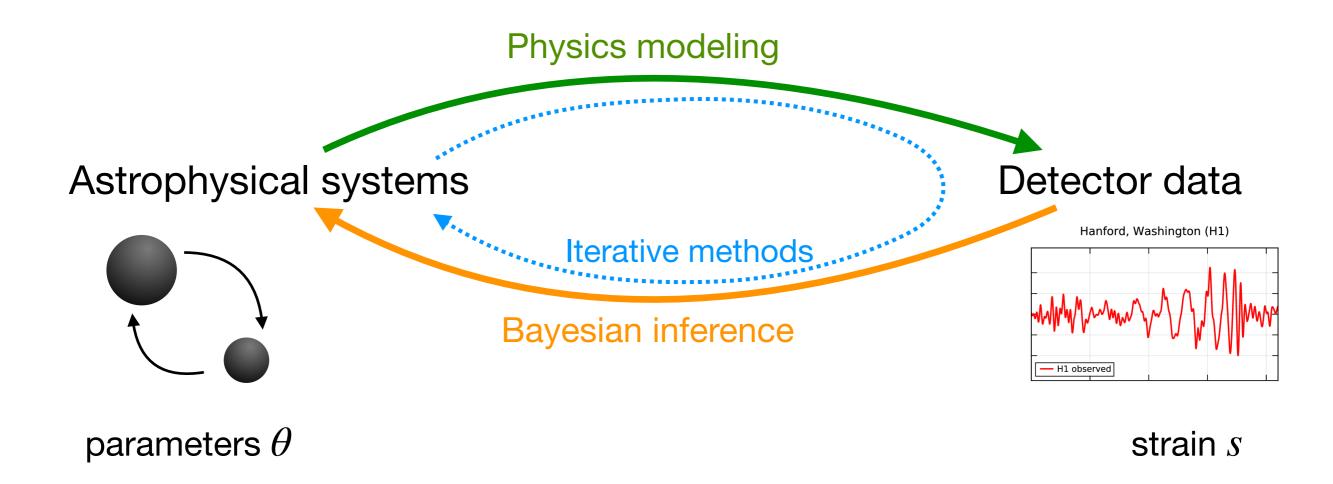


Image: Abbott et al (2016)

- Prior $p(\theta)$ based on beliefs about system before looking at data,
 - e.g., uniform in m_1, m_2 over some range, uniform in spatial volume, etc.
- · Once likelihood and prior are defined, posterior can be evaluated up to normalization.

Introduction

• To obtain samples $\theta \sim p(\theta \mid s)$, typically use an iterative method, such as Markov chain Monte Carlo (MCMC) or nested sampling.



Iterative samplers

Computationally expensive:

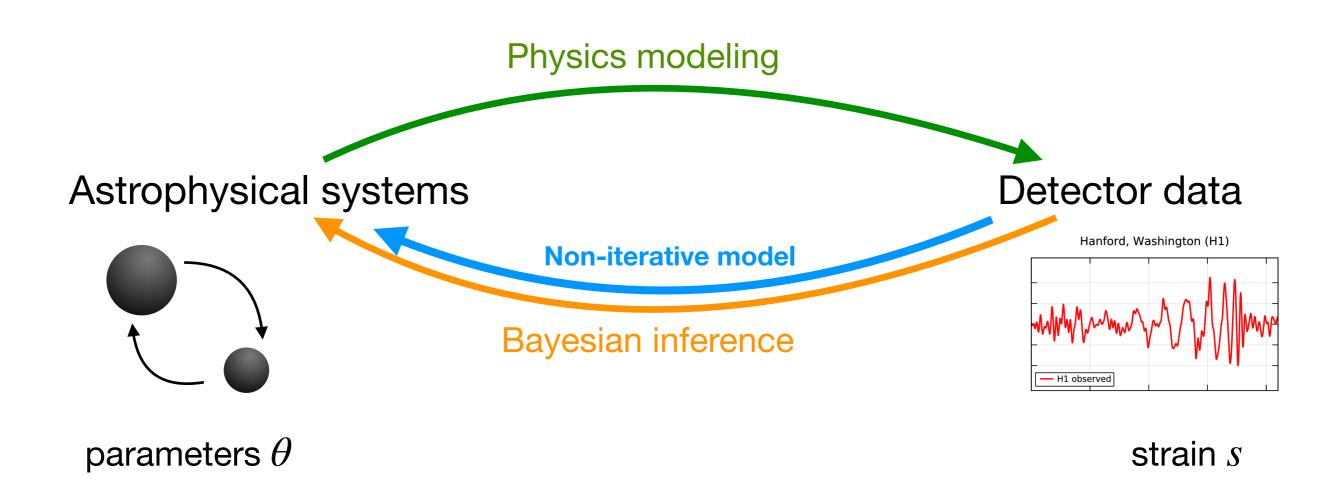
- Many likelihood evaluations required for each independent sample.
- · Likelihood evaluation slow, requires a waveform to be generated.
- Days to weeks for inference for a single event, depending on type of event and waveform model. Fast inference needed for multi-messenger followup.
- Inference must be repeated for every event. Detection rate growing with detection sensitivity.

Limited scope:

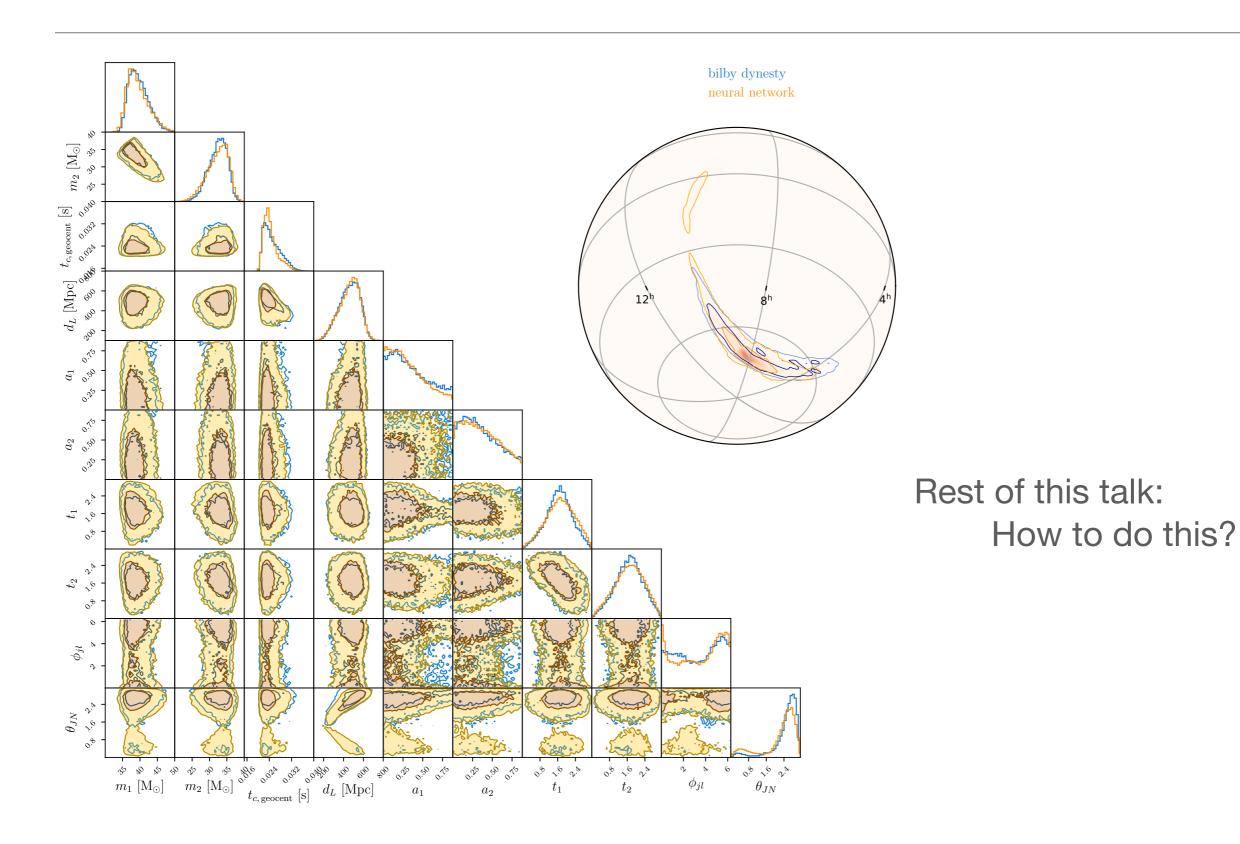
Requires ability to evaluate likelihood. Noise must be (stationary) Gaussian.

Introduction

Can we build a non-iterative inverse model?



Demonstration on GW150914



Two key ideas

1. Neural-network conditional density estimator $q(\theta \mid s)$:

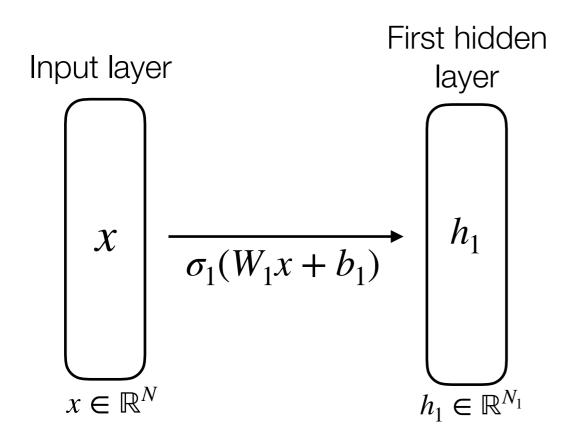
- Represent complicated distributions using method of normalizing flows.
- Fast sampling and evaluation.

2. Simulation-based inference:

- Training $q(\theta \mid s) \to p(\theta \mid s)$ requires only simulated data $s \sim p(s \mid \theta)$.
- No posterior samples or likelihood evaluations.

Introduction to neural networks

Nonlinear functions as composition of simple mappings:



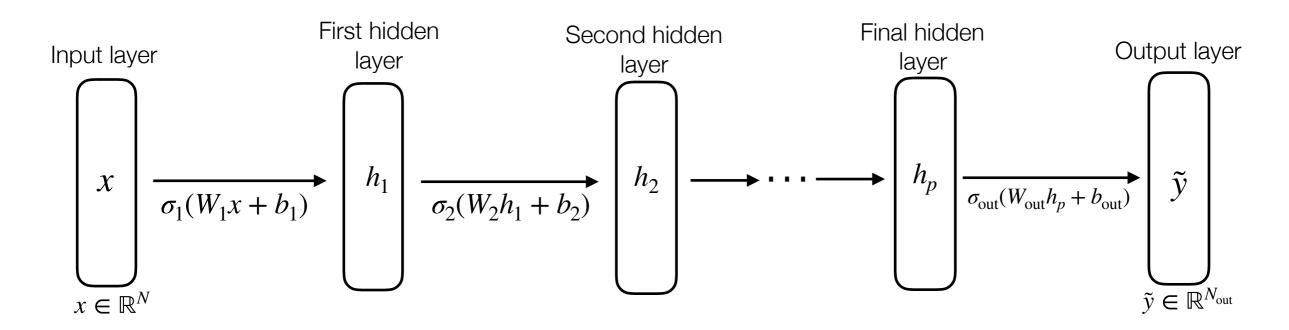
1. Affine transformation

$$W_1x + b_1$$

Element-wise nonlinear mapping

$$\sigma_{1,i}(x_i) = \begin{cases} x_i & \text{if } x_i \ge 0, \\ 0 & \text{if } x_i < 0. \end{cases}$$

Introduction to neural networks



- (x, y) pairs of training data \longrightarrow learn a function y(x)
- · Minimize loss function, e.g., $L = \mathbb{E}_{\{(x,y)\}} \sum_{i=1}^{N_{\mathrm{out}}} \left(\widetilde{y}_i(x) y_i \right)^2$
- Tune (W_i, b_i) using stochastic gradient descent.

Neural networks as probability distributions

Interpret the neural network as a conditional probability distribution.

function
$$\tilde{y}(x)$$
 \longrightarrow distribution $q(y|x)$

$$= \mathcal{N}(\tilde{y}(x), 1)(y)$$

$$= \frac{1}{(2\pi)^{N_{\text{out}}/2}} \exp\left(-\frac{1}{2} \sum_{i=1}^{N_{\text{out}}} (y_i - \tilde{y}_i(x))^2\right)$$

• Maximize the likelihood that $\{(x, y)\}$ came from $q(y \mid x)$,

$$L = \mathbb{E}[-\log q(y|x)] \propto \mathbb{E}\left[\sum_{i=1}^{N_{\text{out}}} (y_i - \tilde{y}_i(x))^2\right] \qquad \text{Squared difference loss!}$$

More complicated distributions can also be parametrized by neural networks.

Simulation-based inference

[First applied to GW by Chua and Vallisneri (2020), Gabbard et al (2019)]

 Train network to model true posterior, as given by prior and likelihood that we specify, i.e.,

$$q(\theta \mid s) \to p(\theta \mid s)$$

Minimize expectation value (over s) of cross-entropy between the distributions

$$L = -\int \mathrm{d} s \, p(s) \int \mathrm{d} \theta \, p(\theta \, | \, s) \, \log q(\theta \, | \, s)$$
 Intractable with knowing posterior for each $s!$

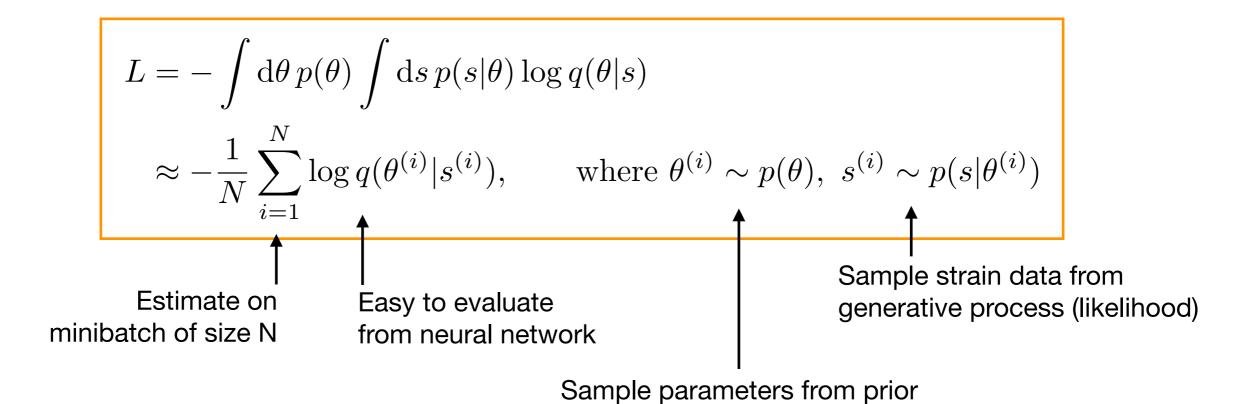
• Bayes' theorem $\implies p(s) p(\theta | s) = p(\theta) p(s | \theta)$

$$\therefore L = -\int d\theta \, p(\theta) \int ds \, p(s \,|\, \theta) \, \log q(\theta \,|\, s)$$

Only requires samples from likelihood, not the posterior!

Simulation-based inference

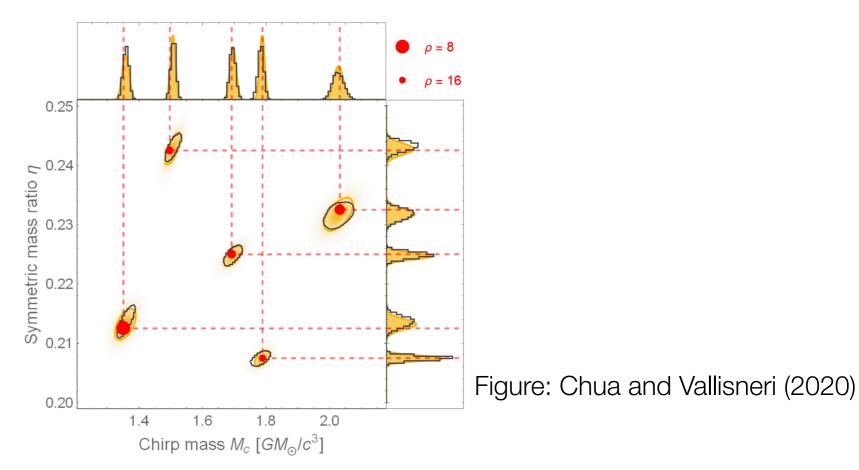
Loss function



- Choose network parameters that minimize L: compute gradient of L with respect to network parameters and use stochastic gradient descent.
- Never evaluate a likelihood and no need for posterior samples!

Gravitational-wave parameter estimation

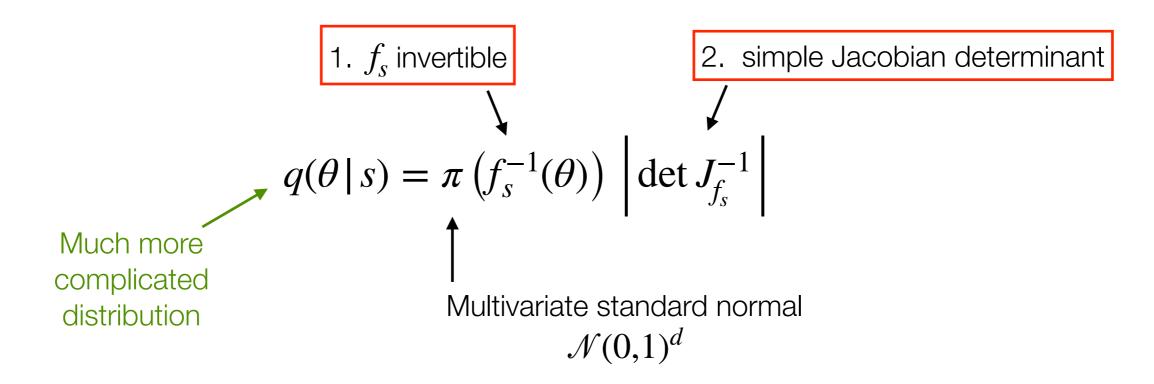
· Chua and Vallisneri (2020) applied SBI with Gaussian $q(\theta \mid s)$ to gravitational waves:



- Works for high signal-to-noise, but more generally distributions can have higher moments and multimodality.
- Require $q(\theta \mid s)$ with flexible distribution over θ and complicated dependence on s.

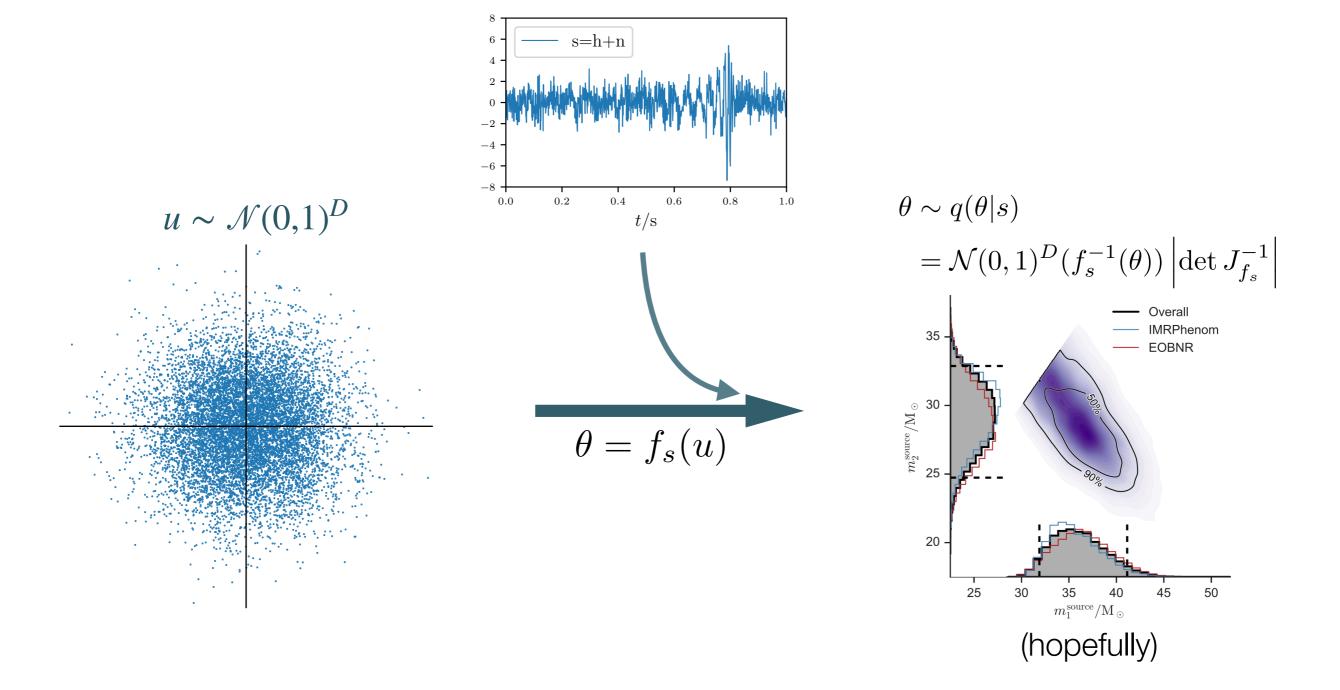
Conditional density estimator

• Our approach: Model defined by a normalizing flow $f_s: u \mapsto \theta$ from a simple distribution to a complex one:



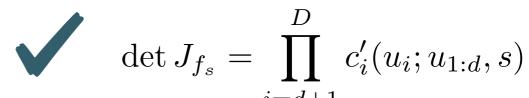
- Easy to sample and evaluate $\pi(u) \implies$ same for $q(\theta | s)$.
- Define normalizing flow in terms of a neural network.

Normalizing flows for gravitational waves



Requirements:

- 1. Invertible
- 2. Simple Jacobian determinant



Use a sequence of "coupling transforms":

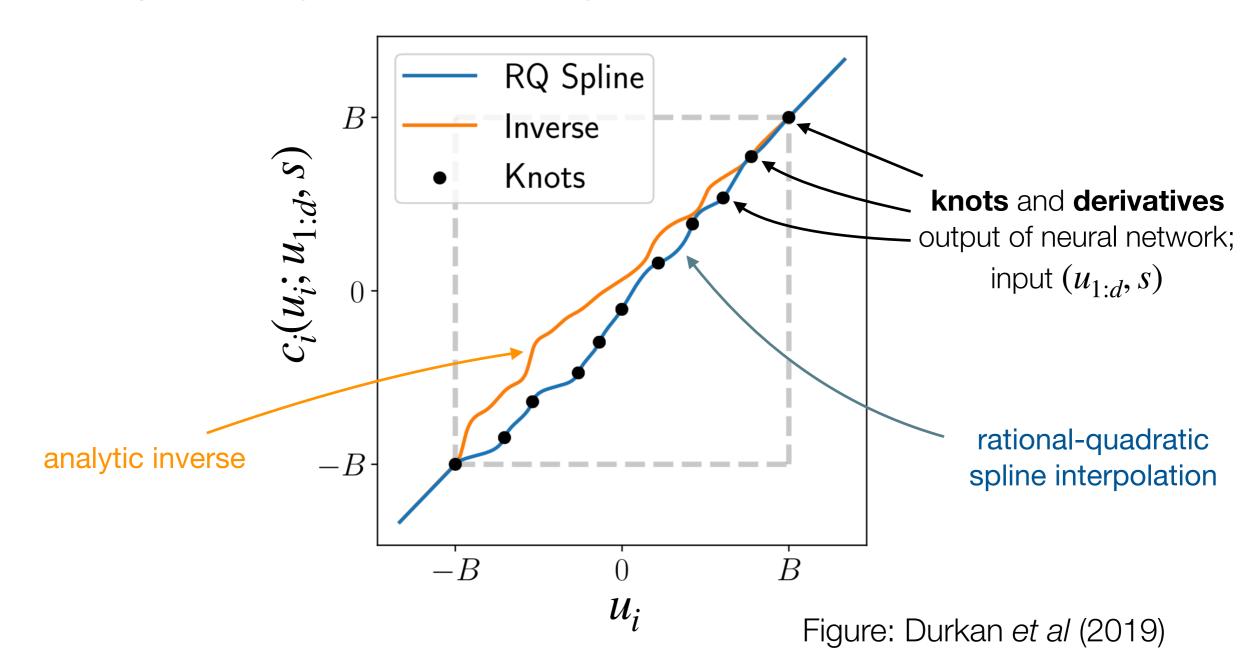
$$c_{s,i}(u) = \begin{cases} u_i & \text{if } i \le d, \\ c_i(u_i; u_{1:d}, s) & \text{if } i > d. \end{cases}$$

Hold fixed half of the components

Transform remaining components element-wise, conditional on other half and *s*.

· c_i should be differentiable and have analytic inverse with respect to u_i .

Neural spline flow (Durkan et al, 2019):



Neural spline flow can represent very complicated multimodal distributions:

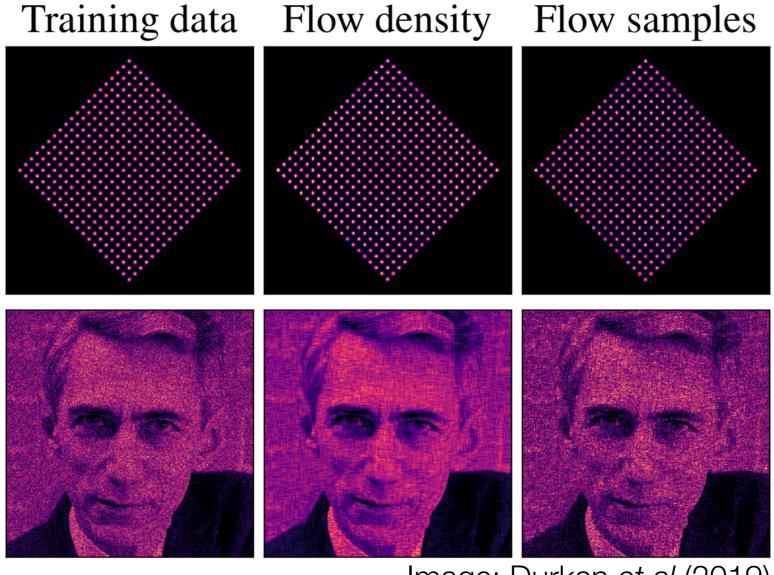


Image: Durkan et al (2019)

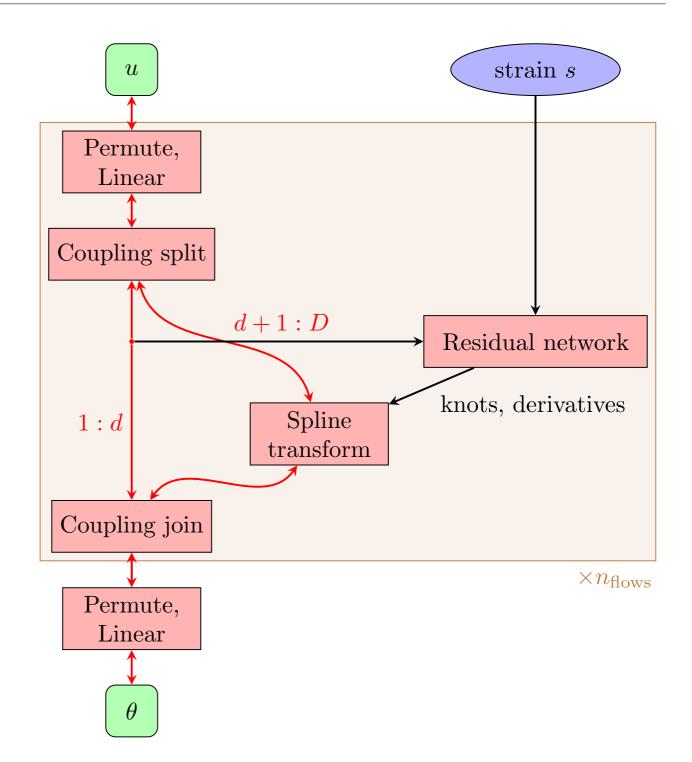
 Transform <u>half</u> the components in each coupling transform

$$c_{s,i}(u) = \begin{cases} u_i & \text{if } i \leq d, \\ c_i(u_i; u_{1:d}, s) & \text{if } i > d. \end{cases}$$

Rational-quadratic spline function

- parametrized by functions of $(u_{1:d}, s)$
- analytic inverse and derivative

• Sequence of transformations give very flexible $q(\theta \mid s)$.



Application to binary black holes

Recall loss function

$$L \approx -\frac{1}{N} \sum_{i=1}^{N} \log q \left(\theta^{(i)} | s^{(i)} \right), \quad \text{where } \theta^{(i)} \sim p(\theta) \text{ and } s^{(i)} \sim p(s | \theta^{(i)})$$

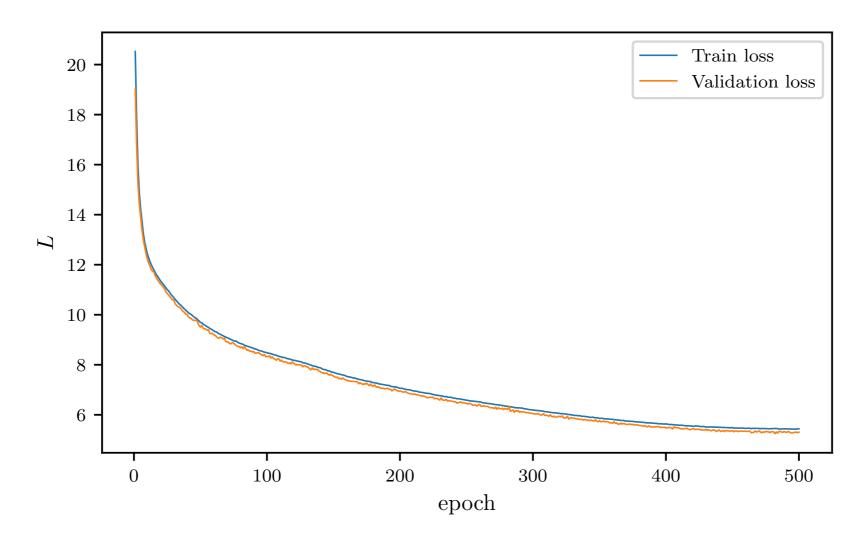
- Training requires simulated data.
 - 1. Draw parameters from prior, $\theta^{(i)} \sim p(\theta)$ 15D space for binary black holes
 - 2. Calculate waveform using a model, $h^{(i)} = h(\theta^{(i)})$ IMRPhenomPv2
 - 3. Add stationary Gaussian noise, $s^{(i)} = h^{(i)} + n^{(i)}$, where $n^{(i)} \sim p_S(n)$.

PSD at time of event

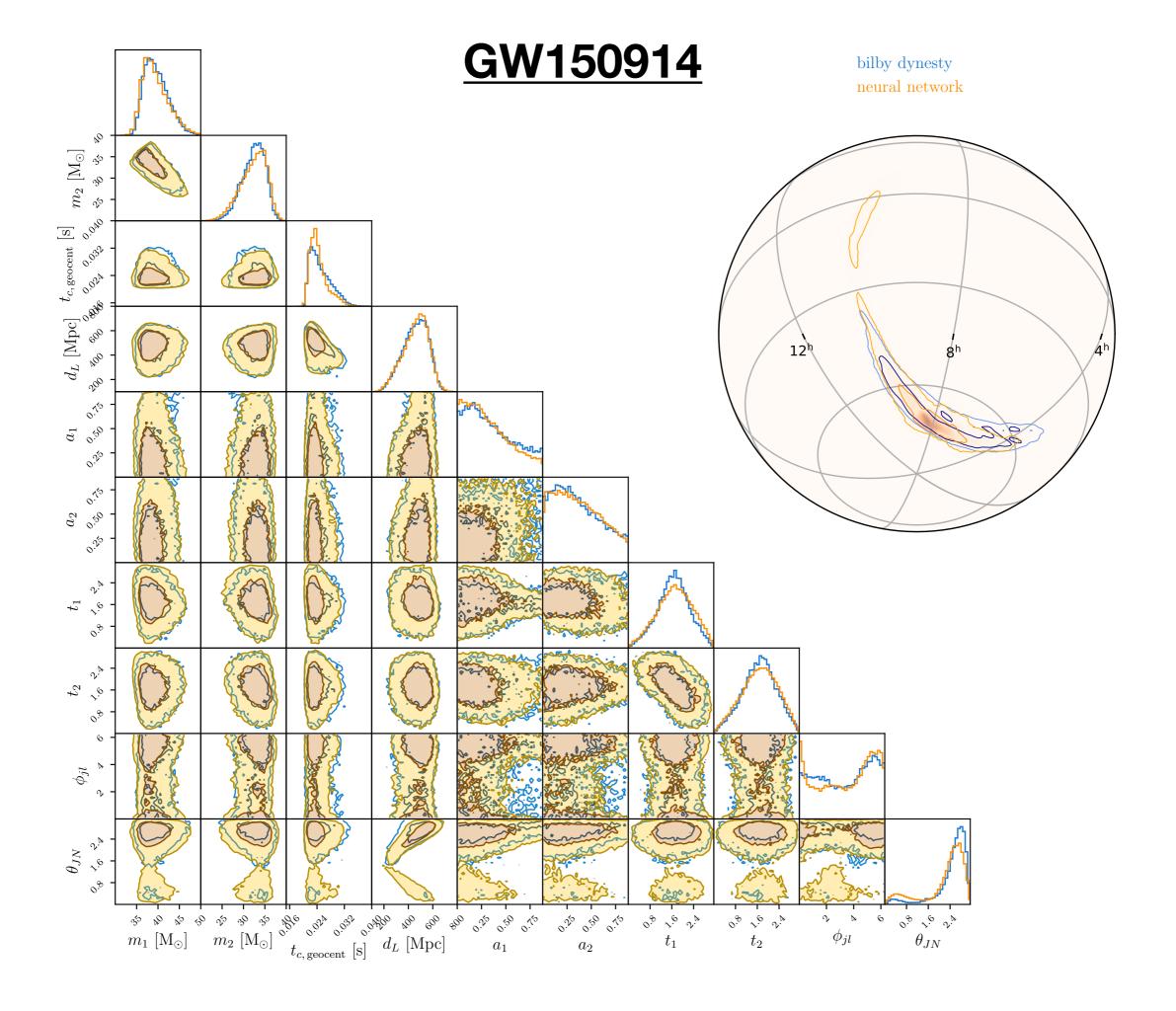
4. Calculate $q\left(\theta^{(i)} \mid s^{(i)}\right)$ using normalizing flow.

Application to binary black holes

• Training: 10^6 -element training set; 500 epochs ~ few days

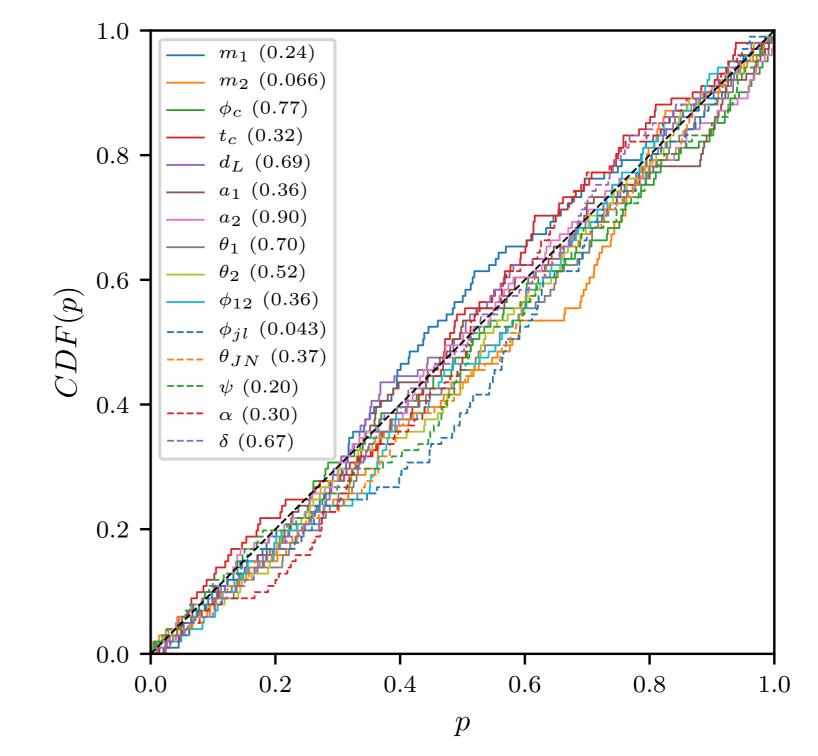


Inference: Plug in strain for GW150914; thousands of samples / second



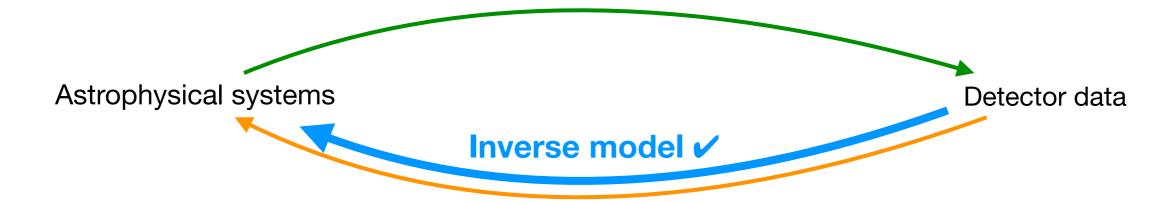
P—P plot

- We have built posterior model for any $s \sim p(s)$.
- Perform inference on 100 injections. (A few minutes total.)
- For each 1D marginalized posterior, plot CDF of percentile values of true parameters.



Summary

 Using simulation-based inference and normalizing flows, can build non-iterative inverse models for system parameters given the data.



Fast direct sampling for any $s \sim p(s)$ used for training.

- · Performed accurate parameter estimation on GW150914 strain data in full 15D space.
- <u>Next</u>: Improve treatment of detector noise to allow variation from event to event, fully amortizing training time over inference runs.
- Code available: https://github.com/stephengreen/lfi-gw

Outlook

- In addition to fast inference, normalizing flows and simulation-based inference can give more accurate inference than standard methods because an explicit likelihood function is not required!
- Many potential applications for gravitational waves:
 - 1. Population inference (see work of K. Wong et al).
 - 2. Move beyond the idealization of stationary Gaussian noise, reducing systematic error present in standard analyses. Learn to remove glitches.
 - 3. Extend to long complicated signals, like binary neutron stars and extreme massratio inspirals for LISA.
 - 4. Expand the parameter space to multiple simultaneous events, as predicted for LISA.

THANK YOU