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INntroduction

Since the first detection of gravitational
waves, there have been steady
Improvements in detector sensitivity.
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Bayesian parameter inference for compact binaries

- Sample posterior distribution for system parameters 6 (masses, spins, sky position, etc.)
given detector strain data s.

likelihood prior
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evidence (normalizing factor)

- Likelihood based on assumption of stationary
Gaussian detector noise

|
p(s|0) x exp <—5 ZI: (57— (O |57 — hf)))
where (alb) = ZJ df a(f)b(f):, _(F fc)l(f)*b(f) waveform model
0 n



Bayesian parameter inference for compact binaries

- Sample posterior distribution for system parameters ¢ (masses, spins, sky position,
etc.) given detector strain data s.

—— Overall
—— IMRPhenom
—— EOBNR

likelihood prior

T 1 1 1
25 30 35 40 45 50
m?()‘l]'CO/M o

Image: Abbott et al (2016)

evidence (normalizing factor)

- Prior p(0) based on beliefs about system before looking at data,

e.g., uniform in m,, m, over some range,

uniform in spatial volume,
etc.

* Once likelihood and prior are defined, posterior can be evaluated up to normalization.



INntroduction

- To obtain samples 6 ~ p(@|s), typically use an iterative method, such as
Markov chain Monte Carlo (MCMC) or nested sampling.
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lterative samplers

- Computationally expensive:
Many likelihood evaluations required for each independent sample.
Likelihood evaluation slow, requires a waveform to be generated.

Days to weeks for inference for a single event, depending on type of event
and waveform model. Fast inference needed for multi-messenger followup.

Inference must be repeated for every event. Detection rate growing with
detection sensitivity.

Limited scope:

Requires ability to evaluate likelihood. Noise must be (stationary) Gaussian.



INntroduction

- Can we build a non-iterative inverse model?
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Demonstration on GW150914

bilby dynesty

neural network
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Two key ideas

1. Neural-network conditional density estimator g(@ | s):

- Represent complicated distributions using method of normalizing flows.

- Fast sampling and evaluation.

2. Simulation-based inference:
- Training g(@|s) — p(@|s) requires only simulated data s ~ p(s|6).

- No posterior samples or likelihood evaluations.

12



Introduction to neural networks

- Nonlinear functions as composition of simple mappings:

First hidden
Input layer layer
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Introduction to neural networks

First hidden Second hidden Final hidden
Input layer layer layer layer Output layer
() ) M) M) R
X > | Iy > | hy | — o ——| B, | =
Gl(Wl.x + bl) 62(W2h1 -+ bZ) Uout(Wouthp + bout) y
— - L - -
X € RN 5} (- RNout
- (x, y) pairs of training data — learn a function y(x)
Nout
C e . ~ 2
Minimize loss function, e.g., L = E¢(; E (g:(x) — y3)
i=1

- Tune (W, b,) using stochastic gradient descent.



Neural networks as probability distributions

- Interpret the neural network as a conditional probability distribution.

function g(x) o distribution q(y|z)

= N(9(z), 1)(y)
N (zw)zlvout/z AP <_% Z(yz - gi(x))2>

1=1

. Maximize the likelihood that { (x, y) } came from g(y|x),

_Nout i
L =E|-logq(y|x)] x E Z (y; — 7i(x))? Squared difference loss!

| 1=1

- More complicated distributions can also be parametrized by neural networks.
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Simulation-based inference

[First applied to GW by Chua and Vallisneri (2020), Gabbard et al (2019)]

- Train network to model true posterior, as given by prior and likelihood that we
specify, i.e.,

q(0|s) — p@]s)
- Minimize expectation value (over s) of cross-entropy between the distributions

L=- stp(s)[d@p(@ls) log g(@| s)

Intractable with knowing posterior for each s!

- Bayes’ theorem = p(s)p(@|s) = p(0) p(s|O)

L =— Jd@p(@)[dsp(slé’) log g(@| )

Only requires samples from likelihood,
not the posterior!
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Simulation-based inference

- Loss function

L—— / 49 p(9) / ds p(s]6) log q(6)s)

N
1 o | | |
N E log (8D ]s\V), where 09 ~ p(0), s ~ p(s]0)

i=1 A T
_ T T Sample strain data from
Estimate on Easy to evaluate generative process (likelihood)
minibatch of size N from neural network

Sample parameters from prior

- Choose network parameters that minimize L: compute gradient of L with respect to
network parameters and use stochastic gradient descent.

- Never evaluate a likelihood and no need for posterior samples!
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Gravitational-wave parameter estimation

- Chua and Vallisneri (2020) applied SBI with Gaussian g(& | s) to gravitational waves:
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- Works for high signal-to-noise, but more generally distributions can have higher moments
and multimodality.

- Require g(@] s) with flexible distribution over 8 and complicated dependence on s.
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Conditional density estimator

- Our approach: Model defined by a normalizing flow f; : u — @ from a simple

distribution to a complex one:

1. f, invertible 2. simple Jacobian determinant
@ls) == (f;'(0)) |detJ "
q S)=7\J, f
Much more T
complicated
distribution Multivariate standard normal
N(0,1)4

- Easy to sample and evaluate 7(#) = same for g(&|s).

-+ Define normalizing flow in terms of a neural network.
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Normalizing flow

Requirements:

1. Invertible J
D

2. Simple Jacobian determinant / det Jr, = || c(usiura,s)
1=d—+1

Use a sequence of “coupling transforms”:

( . Hold fixed half of the components
U; if 7 < d,

Cs,i(u) = < o N B
C; (w:; Ui.d, S) if ¢ > d. Translf(l)rm remaining components element-wise,
\ conditional on other half and s.

¢; should be differentiable and have analytic inverse with respect to u,.
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Normalizing flow

Neural spline flow (Durkan et al, 2019):
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Figure: Durkan et al (2019)
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Normalizing flow

Neural spline flow can represent very complicated multimodal distributions:

Training data Flow density Flow samples

Iage: Durka t ' (2019)
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Normalizing flow

Transform half the components in
each coupling transform

ci(uq;;ulzd, S) if 7 > d.

Rational-quadratic spline function
e parametrized by functions of (u;.4, §)
¢ analytic inverse and derivative

Sequence of transformations give
very flexible g(@ | s).
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Application to binary black holes

- Recall loss function

N
1 o | | |
L~ — 7Z:;logq (9(2)]3(7’)) , where 09 ~ p(0) and s ~ p(s|6))

- Training requires simulated data.
1. Draw parameters from prior, ) ~ p(0) 15D space for binary black holes
2. Calculate waveform using a model, 7Y = h(OW) IMRPhenomPv2
3. Add stationary Gaussian noise, s*) = 1Y) + n¥, where n®” ~ py(n).

PSD at time of event

4. Calculate g (Q(i) | s(i)) using normalizing flow.
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Application to binary black holes

. Training: 10%-element training set; 500 epochs ~ few days

20 Train loss

Validation loss
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- Inference: Plug in strain for GW150914; thousands of samples / second
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P —P plot

- We have built posterior
model for any s ~ p(s).

- Perform inference on 100
injections. (A few minutes
total.)

- For each 1D marginalized
posterior, plot CDF of
percentile values of true
parameters.
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Summary

- Using simulation-based inference and normalizing flows, can build non-iterative inverse
models for system parameters given the data.

/ T

Astrophysical systems Detector data

\ Inverse model v/ /

Fast direct sampling for any s ~ p(s) used for training.

Performed accurate parameter estimation on GW150914 strain data in full 15D space.

- Next: Improve treatment of detector noise to allow variation from event to event, fully
amortizing training time over inference runs.

- Code available: https://github.com/stephengreen/Ifi-gw
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https://github.com/stephengreen/lfi-gw

Outlook

- In addition to fast inference, normalizing flows and simulation-based inference can give
more accurate inference than standard methods because an explicit likelihood function is
not required!

- Many potential applications for gravitational waves:
1. Population inference (see work of K. Wong et al).

2. Move beyond the idealization of stationary Gaussian noise, reducing systematic
error present in standard analyses. Learn to remove glitches.

3. Extend to long complicated signals, like binary neutron stars and extreme mass-
ratio inspirals for LISA.

4. Expand the parameter space to multiple simultaneous events, as predicted for
LISA.

THANK YOU
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